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THE CYLINDRICAL ANTENNA WITH NON-REFLECTING
RESISTIVE LOADING
By Tai Tsun Wu and Ronold W. P. King

-Gordon Mc Kay Laboratory, Harvard University
.Cambridge, Massachusetts

SUMMARY }4%77

The distribution of current along a center-driven cylindrical antenna is
obtained when the material forming the antenna is resistive. The particular
case is considered when the impedance per unit length of the antenna is a
function of the distance from the end. A solution is obtained specifically when
the current is represented by an outward traveling wave with no reflected wave.
The admittance of the antenna and the far field pattern is determined. Field
patterns are evaluated for a wide range of lengths. These are characterized
by a single major lobe with a very small minor lobe structure.

INTRODUCTION

For some purposes, the directional and broad-band properties of traveling-
wayve antennas are desirable. An example is the traveling-wave V-antenna.
The first work on traveling-wave dipoles was reported by Altschuler (ref. 1)
who inserted lumped resistors at a quarter wavelength from the ends of the
antenna. Although this location of the resistors is not critical, the traveling-
wave nature of the current diminishes as the frequency is changed so that the
lumped resistors are no longer at the maxima of the current.

. In a recent report (ref. 2) the distribution of current and the driving-point
admittance were determined for a cylindrical antenna with a continuously
distributed constant internal impedance per unit length. It is now proposed to
investigate the cylindrical antenna with a variable internal impedance per unit
length. In particular, it is desired to determine an axial distribution of the
internal impedance for which a pure outward traveling wave exists on an

antenna of finite length.



THE DIFFERENTIAL EQUATION AND ITS SOLUTION

The axial component A, (z) of the vector potential on the surface of a
cylindrical antenna that has the internal impedance per unit length z! (z) ,
carries a total axial current I,(z) , and is driven at z = 0 by a delta-function
generator with emf VOe and satisfies the one-dimensional wave equation in the
form

. 2
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if a time-dependence ert is assumed. The internal impedance per unit
length z!'(z) is expressed as a function of the axial coordinate z . It is
given by

2! (2) 1 (2)

TS 2Tad(z) o(z)

for a circular tube with constant radius a . In order to vary the impedance
per unit length, it is assumed that the conductivity o on the wall thickness

d may be functions of location along the antenna. The vector potential on the
surface of the antenna is

w b
A (z) = Z%S I (z')K(z,z') dz’ (3)
-h
where
-jkor

K(z,z') = S (4)
with

T =/(z-z')2+aa . (5)

Since the ratio of vector potential to current along an antenna is
approximately constant, it is possible to set




h
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where VW .is the value where the current I (z) has a maximum.

With (3) - (6) it follows that

2 . .2l ;34“_‘0[ i) Cves -
922 o Fo 2(2) = T, L 2)I,(2) -V, 8(z) (

may be approximated by
2 v j4mk .
(?:?*« ko;) () = ’?;'w' [2'(z) 1,(z) -V ®8(a)] ®

with the notation
47 i '
f(z)=53 2(2) {9)
O

where '§.° = '/Ho /.80 = 1207 ohms, this equation becomes

82 2 j4"1(0 e
;;{fko -jkof(z) I(Z)=-T°,r- VO'G'(Z) . (10)

Except at the driving point z = 0 , the current must satisfy the differential
equation

e 20t _ 11
SEtke k=) | L(z)=0 . (1)

It is readily verified by direct substitution in (11) that when
: 2
f(z) = —— (12)
h - | z |

so that (lli becomes
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a solution is
-k =]
I,(z) = C(h- |z] ) e . (14)

Note in particular, that a solution of the form ejklzl does not satisfy the
equation.

The expression (14) represents a wave of current traveling in the direction

of increasing - [z| , that is, from the generator toward both ends. There is
no reflected wave traveling in the opposite direction.

- THE IMPEDANCE AND EXPANSION PARAMETER

If the current has the form (14) , it follows that the vector potential is given
by

-1 u - ik, 2] s
e, T A (z) = ¥ (z) = WC(h- |z])e : (15)
The scalar potential satisfies the Lorentz condition
o 9A_(z)
$(z) = j 3 9z . (16)
k
o
Also, by symmetry, ¢(-z) = -¢(z) . For z > 0 ,
jwp - \
$(2) = —2% wce K3 [-1 -4k _(h-2)] (17)
4ﬂk°
Jw g
$(+0)= —5 WC(l+jk b) = grbe WC(ltjk h) . (18)
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If the driving voltage is defined by




VS = $(+0)-4(-0) = 24(+0)
it follows that

e
c - jZ'a'n)COVO )
g(l+jk°h)

Hence,

2rv © -jk
I(z) = o (1 ) |z] ) . Ik, |z ]
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The driving-point admittance is

2" 1

Yo = T ¥ T-5/K,b

The impedance is a resistance in series with a capacitance

Zo = Ro“'i/mco

where
Wgo
RO = —ﬁ- = 60 WOhms
and
Co = Soh .

Note that when k_ h>>1, R_>> 1/(.»co

The parameter ¥ is defined in terms of the function

h -'jkrl ~ikr,
S(h-z')e-jkz' er + = — | dz!
) 1 2
w(z) = -
( (h-z)e jkz

(19)
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where 1 =\ﬂz° - z)2'+aZ y Ty = (z +z)2+a2 . Since I(z) and A (z)
both have maximum amplitudes at z = 0 , it is desirable to define ¥=¥(0) .
That is
h -jkr
v = 2 (1-_2_') - jkz! E___S. dz! (27)
- h '€ ro
0
where ry = z"2 + a2 . Since kga<<1, and a <<h , no serious error is

made by setting kz' = kr, in the exponent in the first integral and r_ =z z' in
the second integral.

h -j2kr h
¥ : ZXL———dz'-Ege-JZkz' azt . (28)
ro h
0 0

With A = ka , it follows that

1 . "j2kh

¥ 2[sinh’! 2-C(2a, 2Kh) - jS(2A, 2kh) ]+ g (1

) . (29)

Specifically, when kh =7/2 , h/a =75, §=10, ka =1.57 /75 =.021,
2ka = . 042

Tt 2[570-1.66-31.85]+j2 (L+1) = 8.08 - j 2.43
j i

Similarly, for a thin antenna with h/a = 11, 013, or = 20,
ka=1.57 /11, 013 = 1.41 x 1074

¥l 2010.69-1.65-31.85]+j2 = 18.08 - j2.43

In (29), C(a, x) and S(a, x) are the generalized sine and cosine integrals:

X p.S
Gla,x) = [L5g0W gy | 52,5 = ( =¥ a
0 0

N~

where W = (u2+a2>




THE DISTRIBUTED RESISTIVE LOADING

The continuously varying resistive loading of the antenna is defined by (9)
with (12). Thus

. X
i . O 1 _ 15
202) = 5 TTT=T © Bolzl (30)

where the coefficient 15 is in ohms. With =10 to 20, the coefficient

15¥ ohms ranges from 121 -j36 ohms to 272 -j 36 ohms. At A =288 m

with £=20, h=72m so that = (0) =15%w/h = 2722438 -39 _; 5 ohma/m
is the impedance per unit length at the driving point, In this case a = 6. 54 mm.
‘With z' = 1/27 ade, 2 =0.66, 6.6, and 66 ohms/m for aluminum of
thickness d=10"%, 107 and 108 m and z!=8.55, 85.5, and 8550hms/m
for carbon of thickness d=10"%, 1075, and 10°®m . Thus with thin layers
of aluminum or .carbon a range from below 3.9 ohmse/m at z =0 to very

large values as .z~~h may be constructed.

THE ELECTROMAGNETIC FIELD

The far-zone electric field is given by

Eg" = jusin@A_” (31)
where
r e-jkoro h jk_z'cos ©
- ' !
AZ-WF‘S”Z” da’ . (32)
o o0 -h
With
| -jk |z|
I(z') = C(h-|z|)e ° (33)

this expression becomes



Ce-jko r, h -jk_z!

A s = |\ (h - 2!') e ° cos(ko'z'cosO)dz' ] (34)

The integral is readily evaluated with the following formulas:

o2X

S‘eaxcos bxdx = _Z——f (a cosbx + bsinbx) (35a)
ax v 2ab

xe“ " cosbxdx = ax cosbx + |bx ~—3—> | sinbx p - (35b)

S a +b a +b [ a +b ]

Thus,

y(h -z') e®%' cosbz'dz' =

a(h z‘)+ cosbz' + b(h-z')+ 2ab sinbz!
aZ+v? a“+b
=—————Z {[(a -b )cosbh+2absmbx]e b [ah(az-g-bz).q.az-sz}
(a2+b ) (36)

With a=-jk,, b= k cosO®, a.2+bz = -kozainze, aZ_bZ = -k2(1+cosz®) ,

it follows that
- kozl
S‘(h"Z')e cos(k z'cos®)dz' =

-jk_h
[-(l+cosZO)cos(kohcosO)‘- j2cos@sin(k_hcos®)]e ° -jkohsin20+(l+cosz®)

koz sin*0

(37)




The electric field is

-jk r
jg.ohCe °
Eg = VT F (koh, 0) (38a)

where the vertical field factor is

F (kh, O) =

| -jk_h
..jkohsin20+(1+cosz®)-[j2cos®ain(kohcosO)+(1+cosz®)cos(kohcos@)]e ° l

kh ain3® J
o {38D)

This function vanishes along the axis © = 0 and has the value

-j(k h- 8sink h) + (1 -cosk_h)
7. _ (o} o) 0
Fkh, ) = k_h (39)

in the equatorial plane, © = 7/2 . When kozhz <<1,

F{kh, ®) = k hsin® (40)

which is the same as for any electrically short antenna. The real and
imaginary parts are

Fplkh, ©) =

(1+cos® @)1 -cos k_h cos(k hcos®)] - 2 cos @ sin k_hsin (k_h cos @)

k h sin3 O
o
(41a)
FI (koh, ®) = |
- k.oh sinZG -2cos®cos k_;)h sin (koh cos@®) + (1+cosZO) sin koh cos (koh cos O)
koh sinr@

(41b)



|
When koh = -

l+c0820- 2 cos ®sin (—g;cos Q)

Fp (5, 0) = — (42a)
-Z—Bin 0
T . 2 2 LI
T - —-8in ®©+ (l+cos O)cos(T.cos ®)
F.(=,0) = (42b)
I''2° T 3
—2— 8in 0

- T T T,_2 " ®,_ 2 .
AtO—T’ FR(T, T)— % FI(_Z-,T)"'"E‘"Io When k0h>>1
F(koh, o)~ FI (kdh’ ©) =+ -c8c®, @ 0,

Graphs of FR(koh, o), Fl(koh' ®©), and lF(koh, ®©)| are in Figs. 1-3
for a range of values of koh extending from /2 to 507 . It is seen that
IF(koh, ©)| has one large maximum that is located at © = 90° for khsow
and moves toward © = 0 as koh is increased. With koh = 507 the
maximum is near © = 11°. ©Of particular interest is the fact that minor
lobes are little more than a small ripple on the broad tail of the major

maximum for all values of koh > .
CONCLUSION

The properties of a center-driven cylindrical antenna that is characterized
by a pure traveling wave of current have been investigated. A study of the
combination of two such antennas into traveling-wave V-antennas is reserved
for another paper,

July 1964
Gordon McKay Laboratory, Harvard University
Cambridge, Massachusetts
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